

 Xojo

 GETTING STARTED

	Introduction
	QuickStarts
	Tutorials
	Using the IDE
	Using the Xojo Language
	Object-Oriented Programming
	Example projects
	Debugging

TOPICS

	Advanced features
	Android
	API design
	Application deployment
	Application structure
	Build automation
	Code management
	Communication
	Custom controls
	Data processing
	Databases
	Debugging
	Declares
	File management
	Graphics
	iOS
	Linux
	Localizing your apps
	macOS
	Migrating from other development tools
	Office Automation
	OS information
	Printing
	Raspberry Pi
	Text handling
	Threading
	User interface
	Web
	Windows
	Xojo Cloud
	XojoScript

API

	Android
	Compiler directives
	Cryptography
	Data types
	Databases
	Deprecated
	Exceptions
	Files
	Graphics
	Hardware
	iOS
	Language
	macOS
	Math
	Mobile
	Networking
	OS
	PDF	CellRange
	PDFAnnotation
	PDFButton
	PDFCallout
	PDFCheckBox
	PDFComboBox
	PDFControl
	PDFDocument	Description
	Properties
	Methods
	Enumerations	GraphicsMethods
	PageSizes
	StandardFontNames

	Property descriptions
	Method descriptions
	Notes	Drawing
	Meta data
	JSON format
	Actions
	Images
	Drawing text

	Sample code
	Compatibility
	See also

	PDFGraphics
	PDFLine
	PDFListBox
	PDFPermissions
	PDFPopupMenu
	PDFRadioButton
	PDFShape
	PDFSignature
	PDFTable
	PDFTableDataSource
	PDFTextArea
	PDFTextControl
	PDFTextField
	PDFTOCEntry
	PDFTransition
	PDFViewerOptions

	Printing
	Text
	User interface
	Web
	Windows
	Xojo Cloud

RESOURCES

	Deprecations
	Learn object-oriented programming
	Previous releases
	Programming the Raspberry Pi with Xojo
	Xojo 2023r4 Release Notes
	Reporting bugs and making feature requests
	Roadmap
	System requirements
	Third party products
	Updating Older Projects
	Videos
	XojoTalk podcast

ESPAÑOL

	Guía Rápida
	Iniciación
	Tutorial

FINE PRINT

	Copyrights and trademarks
	End User License Agreement

 Xojo

 	 »
	PDF »
	PDFDocument
	

 Class

PDFDocument

PDF

Description

An object containing graphics and/or text that can be saved to a PDF file.

Properties

	Name
	Type
	Read-Only
	Shared

	Author
	String
		
	Compressed
	Boolean
		
	Creator
	String
		
	CurrentPage
	Integer
		
	EmbeddedFonts
	Boolean
		
	Graphics
	PDFGraphics
	✓
	
	Keywords
	String
		
	Landscape
	Boolean
		
	Language
	String
		
	PageCount
	Integer
	✓
	
	PageHeight
	Double
		
	PageWidth
	Double
		
	Permissions
	PDFPermissions
		
	Subject
	String
		
	Title
	String
		
	ViewerOptions
	PDFViewerOptions
		

Methods

	Name
	Parameters
	Returns
	Shared

	AddAnnotation
	message As String, x As Integer, y As Integer
		
	AddCallout
	callout As PDFCallout
		
	AddChart
	chart As DesktopChart, x As Double, y As Double, width As Double = -1, height As Double = -1
		
		chart As MobileChart, x As Double, y As Double, width As Double = -1, height As Double = -1
		
	AddControl
	ParamArray controls() As PDFControl
		
		controls() As PDFControl
		
	AddEmbeddedFile
	file As FolderItem, x As Integer, y As Integer, width As Integer, height As Integer, description As String = ""
		
	AddEmbeddedMovie
	file As FolderItem, x As Integer, y As Integer, width As Integer, height As Integer, description As String = ""
		
	AddEmbeddedSound
	file As FolderItem, x As Integer, y As Integer, width As Integer, height As Integer, description As String = ""
		
	AddFonts
	f As FolderItem
		✓

	AddGoToPageArea
	page As Integer, x As Integer, y As Integer, width As Integer, height As Integer, Optional x1 As Integer, Optional y1 As Integer
		
	AddLine
	line As PDFLine
		
	AddLinkArea
	URL As String, x As Integer, y As Integer, width As Integer, height As Integer
		
	AddLinkToPDFArea
	file As FolderItem, x As Integer, y As Integer, width As Integer, height As Integer
		
	AddMarkup
	x As Integer, y As Integer, width As Integer, height as Integer, description As String = "", markupColor As Color = &cFFFF79, type As PDFAnnotation.MarkupTypes = PDFAnnotation.MarkupTypes.Highlight
		
	AddShape
	shape As PDFShape
		
	AddTable
	table As PDFTable, x As Double, y As Double
		
	AddTOCEntry
	ParamArray entries() As PDFTOCEntry
		
		entries() As PDFTOCEntry
		
	ClearCache
			✓

	Constructor
	value As JSONItem
		
	Constructor
	value As PDFDocument.PageSizes
		
	Constructor
	width As Double, height As Double
		
	Save
	f As FolderItem
		
	Template
		JSONItem
	
	ToData
		MemoryBlock
	
	TransitionAt
	page As Integer
	PDFTransition
	
		page As Integer, Assigns transition As PDFTransition
		

Enumerations

PDFDocument.GraphicsMethods

GraphicsMethods

All the methods that are supported for creating graphics for PDFDocument. When creating templates via code, these help make the code more readable.

	Name

	Bold

	CharacterSpacing

	Clip

	DashPhase

	DrawLine

	DrawOval

	DrawPicture

	DrawPolygon

	DrawRectangle

	DrawRoundRectangle

	DrawText

	FillOval

	FillPolygon

	FillRectangle

	FillRoundRectangle

	FontName

	FontSize

	Italic

	LineCap

	LineDash

	LineJoin

	MatrixScaleX

	MatrixScaleY

	NextPage

	Outline

	PenColor

	PenSize

	ResetState

	RestoreState

	RotationAngle

	SaveState

	Translate

	Transparency

	Underline

PDFDocument.PageSizes

PageSizes

Specifies the size of the PDF document page.

	Name

	Letter

	Legal

	Tabloid

	A4

	A3

PDFDocument.StandardFontNames

StandardFontNames

The standard embedded fonts available.

	Name

	Times

	Helvetica

	Courier

	Symbol

	ZapfDingbats

	LiberationSans

	LiberationSansBold

	LiberationSansItalic

	LiberationSerif

	LiberationSerifBold

	LiberationSerifItalic

	LiberationMono

	LiberationMonoBold

	LiberationMonoItalic

	TimesNewRoman

	Arial

Property descriptions

PDFDocument.Author

Author As String

The name of the person who authored the document. This is stored in the document's metadata to make it possible to find the document with search utilities.

PDFDocument.Compressed

Compressed As Boolean

If True, the document is stored compressed.

PDFDocument.Creator

Creator As String

The name of the application that created the document.

PDFDocument.CurrentPage

CurrentPage As Integer

The page which is accessed when using page-related properties and methods of the PDFDocument class.

PDFDocument.EmbeddedFonts

EmbeddedFonts As Boolean

If true, fonts used in the PDFDocument will be embedded in the created PDF file.

PDFDocument.Graphics

Graphics As PDFGraphics

An object that can be used to draw text and graphics into the document.

This property is read-only.

PDFDocument.Keywords

Keywords As String

The keywords that best indicate the contents of the document. This is stored in the document's metadata to make it possible to find the document with search utilities.

PDFDocument.Landscape

Landscape As Boolean

If True, the document is in landscape orientation.

PDFDocument.Language

Language As String

The primary language of the document. This value is used to assist various PDF standard features/behaviors such as pronunciation when reading PDF text aloud.

Acceptable values start with a two letter language code followed by a two letter country code. Example values are en-US and es-ES. A complete set of acceptable values can be found here.

PDFDocument.PageCount

PageCount As Integer

The number of pages in the document.

This property is read-only.

PDFDocument.PageHeight

PageHeight As Double

The height (in points) of a page of the document.

PDFDocument.PageWidth

PageWidth As Double

The width (in points) of a page of the document.

PDFDocument.Permissions

Permissions As PDFPermissions

Indicates what limitations (if any) the document has in terms of opening, printing, copying its contents and more.

PDFDocument.Subject

Subject As String

The subject of the document. This is stored in the document's metadata to make it possible to find the document with search utilities.

PDFDocument.Title

Title As String

The title of the document. This is stored in the document's metadata to make it possible to find the document with search utilities.

PDFDocument.ViewerOptions

ViewerOptions As PDFViewerOptions

Sets the UI elements the viewer should display when the document is to be displayed on the screen.

Method descriptions

PDFDocument.AddAnnotation

AddAnnotation(message As String, x As Integer, y As Integer)

Adds a widget to the current page at the coordinates passed that when clicked displays the message passed.

PDFDocument.AddCallout

AddCallout(callout As PDFCallout)

Adds the callout to the current page of the PDF document.

PDFDocument.AddChart

AddChart(chart As DesktopChart, x As Double, y As Double, width As Double = -1, height As Double = -1)

AddChart(chart As MobileChart, x As Double, y As Double, width As Double = -1, height As Double = -1)

Adds the chart to the current page of the PDF document at the coordinates and size specified.

PDFDocument.AddControl

AddControl(ParamArray controls() As PDFControl)

Adds the array of controls passed to the PDF document.

PDFDocument.AddControl

AddControl(controls() As PDFControl)

Adds the array of controls passed to the PDF document.

PDFDocument.AddEmbeddedFile

AddEmbeddedFile(file As FolderItem, x As Integer, y As Integer, width As Integer, height As Integer, description As String = "")

Embeds file into the current page of the PDF document and indicates a clickable region that, when clicked, opens the embedded document with the associated app.

Var d As New PDFDocument
Var g As Graphics = d.Graphics
Var f As FolderItem = FolderItem.ShowOpenFileDialog("")

Const kAttachedFileText As String = "Attached File"

g.DrawText(kAttachedFileText, 20 , 20)

If f <> Nil Then
 d.AddEmbeddedFile(f, 20, 20, g.TextWidth(kAttachedFileText), g.TextHeight)
End If

PDFDocument.AddEmbeddedMovie

AddEmbeddedMovie(file As FolderItem, x As Integer, y As Integer, width As Integer, height As Integer, description As String = "")

Embeds the movie file (.mp4 format) to the current page of the PDF Document. The movie will play, when the user double-clicks the active icon on the page.

Warning

Due to a known issue in Adobe Acrobat on Windows, to properly play embedded movies, the graphics settings must be properly configured.

PDFDocument.AddEmbeddedSound

AddEmbeddedSound(file As FolderItem, x As Integer, y As Integer, width As Integer, height As Integer, description As String = "")

Embeds the sound file (AIFF, 2 Channels, 16 bits, 44.1) into the current page of the PDF document and describes an active area that when double-clicked, plays the sound.

Const kAttachedSound = "Some nice sound"
Var d As New PDFDocument
Var g As Graphics = d.Graphics
Var f As FolderItem = FolderItem.ShowOpenFileDialog("")

If f <> Nil Then
 d.AddEmbeddedSound(f, 100, 20, g.TextWidth(kAttachedSound), g.TextHeight, kAttachedSound)
End If

PDFDocument.AddFonts

AddFonts(f As FolderItem)

All fonts within the folder and any subfolders are embedded within the document so that they are not required to be installed on the user's machine in order for text that uses them to be rendered properly with those fonts.

This method is shared.

This example makes the fonts copied into the Resources > Fonts folder of the compiled app available to the PDFDocument created:

Var d As New PDFDocument
d.AddFonts(SpecialFolder.Resource("Fonts"))

PDFDocument.AddGoToPageArea

AddGoToPageArea(page As Integer, x As Integer, y As Integer, width As Integer, height As Integer, Optional x1 As Integer, Optional y1 As Integer)

Designates an area of the current page that will go to the page passed when pressed.

Providing the optional x1 and y1 parameters will ensure that the area of the page to which the user goes is visible.

PDFDocument.AddLine

AddLine(line As PDFLine)

Adds line to the current page of the PDF Document.

PDFDocument.AddLinkArea

AddLinkArea(URL As String, x As Integer, y As Integer, width As Integer, height As Integer)

Designates an area of the current page that will go to the URL passed when pressed.

PDFDocument.AddLinkToPDFArea

AddLinkToPDFArea(file As FolderItem, x As Integer, y As Integer, width As Integer, height As Integer)

Designates an area of the current page that will open the PDF file passed when pressed.

PDFDocument.AddMarkup

AddMarkup(x As Integer, y As Integer, width As Integer, height as Integer, description As String = "", markupColor As Color = &cFFFF79, type As PDFAnnotation.MarkupTypes = PDFAnnotation.MarkupTypes.Highlight)

Adds any of the predefined styles of markup to the text found below the active area (as described by the x, y, width and height values) on the current page of a PDFDocument instance. When double-clicked it opens a popup annotation window.

' This example highlights the text found below the active area of the added markup annotation.

Var d As New PDFDocument
Var g As Graphics = d.Graphics

Const kSampleText As String = "Lorem ipsum dolor sit amet, consectetur adipiscing elit. Praesent placerat nisi vitae erat pharetra, ac consequat dui facilisis. Pellentesque quis sem non velit dictum fringilla id nec odio. Maecenas ultricies mi sed mauris dignissim sagittis. Pellentesque quis diam ligula. Nunc eu velit in tortor rhoncus commodo. Fusce a mi urna. In semper ex et volutpat lobortis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia curae; Sed magna elit, lacinia vel leo a, egestas ornare est. Donec nec feugiat arcu."

g.DrawText(kSampleText, 20, 500, 400)

Var h As Double = g.TextHeight(kSampleText, 400)

d.AddMarkup(20, 500 - g.TextHeight, 400, h, "Annotation Description")

PDFDocument.AddShape

AddShape(shape As PDFShape)

Adds the shape to the current page of the PDF document.

PDFDocument.AddTable

AddTable(table As PDFTable, x As Double, y As Double)

Adds the table passed at the x and y coordinates passed.

PDFDocument.AddTOCEntry

AddTOCEntry(ParamArray entries() As PDFTOCEntry)

Creates a table of contents from the array of PDFTOCEntrys passed.

PDFDocument.AddTOCEntry

AddTOCEntry(entries() As PDFTOCEntry)

Creates a table of contents from the array of PDFTOCEntrys passed.

PDFDocument.ClearCache

ClearCache

Clears (deletes) all files created in the temporary folder as a result of various font operations.

PDFDocument.Constructor

Constructor(value As JSONItem)

Note

Constructors are special methods called when you create an object with the New keyword and pass in the parameters above.

Creates a PDFDocument based upon the JSON data passed.

PDFDocument.Constructor

Constructor(value As PDFDocument.PageSizes)

Note

Constructors are special methods called when you create an object with the New keyword and pass in the parameters above.

Creates a PDFDocument where the page size is based on the PageSize passed.

PDFDocument.Constructor

Constructor(width As Double, height As Double)

Note

Constructors are special methods called when you create an object with the New keyword and pass in the parameters above.

Creates a PDFDocument where the page size is based width and height passed.

PDFDocument.Save

Save(f As FolderItem)

Creates the PDF document and saves the graphics and metadata to it.

PDFDocument.Template

Template As JSONItem

Returns a JSONItem that represents the PDFDocument in JSON format.

This JSON data can be passed into the PDFDocument constructor to create a PDFDocument effectively making this data act as a template.

PDFDocument.ToData

ToData As MemoryBlock

Returns a MemoryBlock that represents the PDFDocument's contents.

PDFDocument.TransitionAt

TransitionAt(page As Integer) As PDFTransition

Gets the PDFTransition for the page passed.

TransitionAt(page As Integer, Assigns transition As PDFTransition)

Sets a PDFTransition for the page passed.

Transitions can be applied to a PDFDocument page to be used by the viewer app when enabled in presentation or slide show modes.

Notes

PDFDocument supports only .ttf and .otf font files.

Warning

On Linux, PDFDocument requires the Pango library to be installed. While it is installed by default on most Linux distributions, if it's missing and you call a PDFDocument function, an exception will be raised.

Drawing

Every new object is drawn above the previous one in the same way as the Graphics class does in all other cases.

Meta data

The Author, Keywords, Subject and Title are metadata values that can be used by search utilities to find the document.

JSON format

PDFDocuments can be created by passing JSON data to the Constructor (see Constructors above). The JSON format required is as follows:

{
 "General": {
 "Author": String,
 "Creator": String,
 "Keywords": String,
 "Subject": String,
 "Title": String
 },
 "Document": {
 "Compression": Boolean,
 "EmbeddedFonts": Boolean,
 "Landscape": Boolean,
 "Width": Double,
 "Height": Double
 },
 "Actions": { Dictionary { Dictionary } }
 "Images": { Dictionary { Dictionary } }

Actions

Actions is a Dictionary of dictionaries, each containing a single graphics command and parameters you wish to invoke. For example:

"Actions": {
 "0": {
 "Color": "&h00FFFFFF"
 },
 "1": {
 "FillRectangle": ".00,.00,612.00,792.00"
 },
 "2": {
 "FontName": "Helvetica"
 },
 "3": {
 "DrawText": "Sample text,_ENDTEXT_,100,200,200,False"
 }
}

Images

Images is a Dictionary of dictionaries, each containing a single Base64-encoded image from the document (when generated but the Template method) regardless of how many times that image appears in the document. For example:

"Images":{
 "0":
 {"0":"\/9j\/4AAQSkZJRgABAQAASABIAAD………"},
 "1":
 {"1":"\/9j\/4AAQSkZJRgABAQAASABIAAD………"},
 "2":
 {"2":"\/9j\/4AAQSkZJRgABAQAASABIAAD………"}
}

Note that if you are planning to create this manually, the inner key must match the outer key.

Drawing text

The _ENDTEXT_ marker delimits the end of the text to be drawn from the rest of the parameters. This simplifies the JSON structure when created manually.

You can also save your PDFDocument JSON data for use later as a template, by calling the Template method.

Sample code

This example creates a PDFDocument object then draws a bar chart into and saves it to a file on the desktop:

Var pdf As New PDFDocument
Var g As Graphics = pdf.Graphics
g.PenSize = 1
g.DrawLine(0, 0, 0, 324)
g.DrawLine(0, 324, g.Width, 324)

Var r As New Random
Var startX As Integer = 1
Var colors() As Color
Var bars() As Integer

If colors.LastRowIndex = -1 Then
 For n As Integer = 0 To 5
 colors.Add(Color.RGB(r.InRange(0, 255), r.InRange(0, 255), r.InRange(0, 255)))
 bars.Add(r.InRange(325 * 0.1, 325 - 325 * 0.2))
 Next
End If

Var barWidth As Integer = g.Width / 6 * 0.8
Var spaceBetween As Integer = g.Width / 6 * 0.2
For n As Integer = 0 To 5
 g.DrawingColor = colors(n)
 g.FillRectangle(startX, 325 - bars(n), barWidth, bars(n) - 1)
 startX = startX + barWidth + spaceBetween
Next

Var f As FolderItem = SpecialFolder.Desktop.Child("Barchart.pdf")
pdf.Save(f)

Compatibility

Desktop, console, web and iOS project types on all supported operating systems.

See also

Object parent class; PDFTable, DesktopCanvas control; PrinterSetup class

 Previous
 Next

 © Copyright 2024, Xojo, Inc.

 Built with Sphinx using a
 theme
 provided by Read the Docs.
 Have a suggestion about the docs? Let us know.
Docs for the Xojo programming language and IDE

Top

