

 Xojo

 GETTING STARTED

	Introduction
	QuickStarts
	Tutorials
	Using the IDE
	Using the Xojo Language
	Object-Oriented Programming
	Example projects
	Debugging

TOPICS

	Advanced features
	Android
	API design
	Application deployment
	Application structure
	Build automation
	Code management
	Communication
	Custom controls
	Data processing
	Databases
	Debugging
	Declares
	File management
	Graphics
	iOS
	Linux
	Localizing your apps
	macOS
	Migrating from other development tools
	Office Automation
	OS information
	Printing
	Raspberry Pi
	Text handling
	Threading
	User interface
	Web
	Windows
	Xojo Cloud
	XojoScript

API

	Android
	Compiler directives
	Cryptography
	Data types
	Databases
	Deprecated
	Exceptions
	Files
	Graphics
	Hardware
	iOS
	Language
	macOS
	Math
	Mobile
	Networking
	OS
	PDF	CellRange
	PDFAnnotation
	PDFButton
	PDFCallout
	PDFCheckBox
	PDFComboBox
	PDFControl
	PDFDocument
	PDFGraphics	Description
	Properties
	Methods
	Property descriptions
	Method descriptions
	Notes
	Compatibility
	See also

	PDFLine
	PDFListBox
	PDFPermissions
	PDFPopupMenu
	PDFRadioButton
	PDFShape
	PDFSignature
	PDFTable
	PDFTableDataSource
	PDFTextArea
	PDFTextControl
	PDFTextField
	PDFTOCEntry
	PDFTransition
	PDFViewerOptions

	Printing
	Text
	User interface
	Web
	Windows
	Xojo Cloud

RESOURCES

	Deprecations
	Learn object-oriented programming
	Previous releases
	Programming the Raspberry Pi with Xojo
	Xojo 2023r4 Release Notes
	Reporting bugs and making feature requests
	Roadmap
	System requirements
	Third party products
	Updating Older Projects
	Videos
	XojoTalk podcast

ESPAÑOL

	Guía Rápida
	Iniciación
	Tutorial

FINE PRINT

	Copyrights and trademarks
	End User License Agreement

 Xojo

 	 »
	PDF »
	PDFGraphics
	

 Class

PDFGraphics

Graphics

Description

A Graphics object that can be used for drawing to a PDFDocument.

Properties

	Name
	Type
	Read-Only
	Shared

	Bold
	Boolean
		
	Brush
	GraphicsBrush
		
	CharacterSpacing
	Integer
		
	DrawingColor
	Color
		
	Font
	Font
		
	FontAscent
	Double
	✓
	
	FontName
	String
		
	FontSize
	Single
		
	FontUnit
	FontUnits
		
	Height
	Integer
	✓
	
	Italic
	Boolean
		
	LineCap
	Graphics.LineCapTypes
		
	LineDashOffset
	Double
		
	LineJoin
	Graphics.LineJoinTypes
		
	MiterLimit
	Double
		
	Outline
	Boolean
		
	PenSize
	Double
		
	Transparency
	Double
		
	Underline
	Boolean
		
	Width
	Integer
	✓
	

Methods

	Name
	Parameters
	Returns
	Shared

	ClearRectangle
	X As Double, Y As Double, Width As Double, Height As Double
		
	Clip
	X As Double, Y As Double, Width As Double, Height As Double
	Graphics
	
	ClipToPath
	path As GraphicsPath
		
	ClipToRectangle
	x As Double, y As Double, width As Double, height As Double
		
	DrawCautionIcon
	X As Double, Y As Double
		
	DrawLine
	X1 As Double, Y1 As Double, X2 As Double, Y2 As Double
		
	DrawNoteIcon
	X As Double, Y As Double
		
	DrawObject
	Object As object2D, deltaX As Double = 0.0, deltaY As Double = 0.0
		
	DrawOval
	X As Double, Y As Double, Width As Double, Height As Double
		
	DrawPath
	path As GraphicsPath
		
	DrawPicture
	image As Picture, x As Double, y As Double, destWidth As Double = -10000.0, destHeight As Double = -10000.0, sourceX As Double = 0.0, sourceY As Double = 0.0, sourceWidth As Double = -10000.0, sourceHeight As Double = -10000.0
		
	DrawRectangle
	X As Double, Y As Double, Width As Double, Height As Double
		
	DrawRoundRectangle
	X As Double, Y As Double, Width As Double, Height As Double, ArcWidth As Double, ArcHeight As Double
		
	DrawStopIcon
	X As Double, Y As Double
		
	DrawText
	str As String, x As Double, y As Double, width As Double = 0.0, condense As Boolean = False
		
	FillOval
	X As Double, Y As Double, Width As Double, Height As Double
		
	FillPath
	path As GraphicsPath, autoClose As Boolean = False
		
	FillRectangle
	X As Double, Y As Double, Width As Double, Height As Double
		
	FillRoundRectangle
	X As Double, Y As Double, Width As Double, Height As Double, ArcWidth As Double, ArcHeight As Double
		
	LineDash
	Assigns values() As Double
		
	NextPage
			
		width As Double, height As Double
		
	ResetState
			
	RestoreState
			
	Rotate
	angle As Double
		
	SaveState
			
	Scale
	x As Double, y As Double
		
	TextDirection
	Text As String
	Graphics.TextDirections
	
	TextHeight
		Double
	
		Text As String, WrapWidth As Double
	Double
	
	TextWidth
	Text As String
	Double
	
	Translate
	x As Double, y As Double
		

Property descriptions

PDFGraphics.Bold

Bold As Boolean

If True, applies the bold style to the control's caption and/or its text content if any.

Mac apps can only display font styles that are available. You cannot force a font to display in bold or italic if it does not have bold or italic variations available. In this situation, the Bold property will not affect the font.

PDFGraphics.Brush

Brush As GraphicsBrush

The brush to be used when drawing.

PDFGraphics.CharacterSpacing

CharacterSpacing As Integer

This property is expressed as a percentage of spacing between characters. Positive and negative values are accepted.

PDFGraphics.DrawingColor

DrawingColor As Color

The currently selected color for the Graphics object. This color is used by the various drawing methods.

This example draws a diagonal line in the current DrawingColor.

g.DrawingColor = &cff0000
g.FillRectangle(10, 10, 100, 100)

PDFGraphics.Font

Font As Font

The font used for displaying text.

This in the Paint event draws text using a specific font:

g.Font = Font.BoldSystemFont
g.DrawText("Hello", 5, 20)

Note

This property is only available for Mobile projects. To assign a font in other project types, use the FontName property.

PDFGraphics.FontAscent

FontAscent As Double

Returns the ascent of a line of text drawn with the current font.

This property is read-only.

FontAscent is the height of the tallest font letter above the font baseline.

Important

This property is not supported for iOS and Android.

The following example gets the font ascent of the text that was drawn with DrawText.

g.DrawingColor = &cff0000
g.Italic = True
g.DrawText("Hello world", 10, 10)
MessageBox(g.FontAscent.ToString)

PDFGraphics.FontName

FontName As String

Name of the font used to display the caption or text content.

When used with PDFDocument, you can assign font names using the PDFDocument.StandardFontNames enumeration.

You can enter any font that is installed on the computer or the names of the two metafonts, System and SmallSystem.

The System font is the font used by the system software as its default font. Different operating systems use different default fonts. If the system software supports both a large and small System font, you can also specify the SmallSystem font as your FontName.

On macOS, SmallSystem specifies the smaller system font and may make the control smaller in size as well. On Windows and Linux, SmallSystem is the same as System.

Important

This property is not supported for iOS and Android.

This code sets the FontName property.

Me.FontName = "Helvetica"

PDFGraphics.FontSize

FontSize As Single

Point size of the font used to display a caption or text content.

If you enter zero as the FontSize, your app will use the font size that works best for the platform on which it is running.

Important

This property is not supported for iOS and Android.

This code sets the font size to 16 points.

Me.FontSize = 16

PDFGraphics.FontUnit

FontUnit As FontUnits

The units in which FontSize is measured.

Note

FontUnit and the FontUnits enumeration are not available for use in Mobile, Console or Web apps.

The FontUnits enumeration values are shown below:

	Value

	Default

	Pixel

	Point

	Inch

	Millimeter

This example sets the units to points using the class constant.

g.DrawingColor = &cff0000
g.Italic = True
g.FontUnit = FontUnits.Point
g.FontSize = 16
g.DrawText("Hello world", 10, 10)

PDFGraphics.Height

Height As Integer

The height in pixels of the parent object, typically a Canvas control or a Window.

This property is read-only.

For example, if the graphics class object is in a Canvas control, Height returns the height of the control.

This example in the Canvas.Paint event draws a box the height of the Canvas itself:

g.DrawingColor = &c0000ff
g.FillRectangle(0, 0, g.Width, g.Height)

PDFGraphics.Italic

Italic As Boolean

If True, text will appear in italic when using Graphics.DrawText.

This example draws "Hello World" in red italic inside a Canvas.

g.DrawingColor = Color.Red
g.Italic = True
g.DrawText("Hello world", 10, 10)

PDFGraphics.LineCap

LineCap As Graphics.LineCapTypes

The way in which the end of the line will be drawn.

Affects only lines drawn when using DrawPath, GraphicsPath and Object2D.

As an example, in the DesktopCanvas.Paint event, set the line cap to round:

g.LineCap = Graphics.LineCapTypes.Round

PDFGraphics.LineDashOffset

LineDashOffset As Double

Specifies the starting point of the dash.

An offset of 0.5 would mean the first dash would start at half size.

Draws a line with 2 unit dashes and 2 unit gaps with the first dash offset by 1.

g.LineDash = Array(2.0, 3.0)
g.LineDashOffset = 1.0
g.DrawLine(0, 0, g.Width, g.Height)

PDFGraphics.LineJoin

LineJoin As Graphics.LineJoinTypes

The way in which the end of the line will be drawn when connecting to another line.

Affects only lines drawn when using DrawPath, GraphicsPath and Object2D. It will also affect how corners are drawn when using DrawRectangle.

In the DesktopCanvas.Paint, set the line join to round:

g.LineJoin = Graphics.LineJoinTypes.Round

PDFGraphics.MiterLimit

MiterLimit As Double

The maximum length of a miter which is the distance between the inner corner and the outer corner where two lines meet.

PDFGraphics.Outline

Outline As Boolean

If True, applies the outline style to the control's caption and/or its text content if any.

Mac apps can only display font styles that are available. You cannot force a font to display in bold or italic if it does not have bold or italic variations available. In this situation, the bold property will not affect the font.

When using Outline on MacOS and Windows, Underline is not supported.

GraphicsBrush is ignored when using Outline on iOS.

This example sets the text to Outline.

Me.Outline = True

PDFGraphics.PenSize

PenSize As Double

The size in points used when drawing lines, ovals and rectangles.

This example sets the PenSize to 5 point:

g.PenSize = 5
g.DrawRectangle(150, 10, 100, 100)

PDFGraphics.Transparency

Transparency As Double

The amount of transparency that affects all drawing to the Graphics object done afterwards. The range is from 0.0 (opaque) to 100.0 (fully transparent). Transparency of the Graphics object can be used to obtain “fading” effects (amongst other uses) by setting the transparency to a value greater than 0.0.

When rendering colors or pictures with alpha channel information, the Transparency property is composited with the alpha channel information. This allows you to perform uniform fading operations easily and efficiently.

On Windows, using the Transparency property only works on Graphics if the Picture was created with a depth of 32, or is a Picture with an alpha channel. Attempting to use it on other forms of Pictures will result in an UnsupportedOperationException.

Create a picture with a blue rectangle drawn with 50% transparency:

Var boxPic As New Picture(100, 100)
boxPic.Graphics.DrawingColor = &c0000ff00
boxPic.Graphics.Transparency = 50.0
boxPic.Graphics.FillRectangle(0, 0, 100, 100)

PDFGraphics.Underline

Underline As Boolean

If True, applies the underline style to the control's caption and/or its text content if any.

PDFGraphics.Width

Width As Integer

The width in pixels of the parent object, typically a Canvas control or a Window.

This property is read-only.

This example in the Canvas.Paint event draws a box the width of the Canvas itself:

g.DrawingColor = &c0000ff
g.FillRectangle(0, 0, g.Width, g.Height)

Method descriptions

PDFGraphics.ClearRectangle

ClearRectangle(X As Double, Y As Double, Width As Double, Height As Double)

Clears the rectangle described by the parameters passed by filling it with the background color of the parent window (on Windows/Linux) or by clearing the context so that the background comes through (on Mac).

This code clears the entire drawing area:

g.ClearRectangle(0, 0, g.Width, g.Height)

PDFGraphics.Clip

Clip(X As Double, Y As Double, Width As Double, Height As Double) As Graphics

Creates a new Graphics object in the parent Graphics object. It has the size and shape defined by the passed parameters.

Graphics calls can only draw inside the passed bounds. After creating a clip, you can draw into it, as with any other Graphics object. However the drawing will be contained within the clipping, not the parent object. Use this to prevent objects from overlapping with other objects in the parent object. Whatever is drawn to the clipped region is confined to that region.

Clip allows clipping beyond the bottom and right edges of the source. This ensures the resulting graphics object will always be the dimensions requested.

When you are drawing a complex image that involves many calls to Graphics methods, you may want to create non-overlapping regions within the area. You then draw into each "child" area, with the assurance that each drawing will not inadvertently overlap another object.

You create a child region within the parent area with the Clip method. You pass it the top-left corner of the child region and its width and height. It returns a new Graphics object that is the specified region inside the parent area. You can then draw into the child area just as with any other Graphics object. The only difference is that the drawing will be confined to the child area. The coordinates of each call are with respect to the top-left corner of the child area. Here is an example of how this works. This code is in the DesktopCanvas.Paint. Two regions at the top of the Canvas are defined by calls to the Clip method. Subsequent calls to the Graphics.DrawRectangle method show where the clippings are. Calls to the DrawOval method draw shapes within the clipped areas. Notice that the first call attempts to draw outside the area. If you were drawing from the parent Graphics object, the first oval would bump into the second.

Sub Paint (g As Graphics)
 Var myClip As Graphics = g.Clip(0, 0, 150, 15)
 Var myClip2 As Graphics = g.Clip(150, 0, 150, 15)
 ' Draw the border of the Canvas in black
 g.DrawingColor = &c000000
 g.DrawRectangle(0, 0, g.Width, g.Height)
 ' Draw into the first area in red
 myClip.DrawingColor = &cff0000
 myClip.DrawRectangle(0, 0, myClip.Width, myClip.Height) ' draw the border of the area.
 myClip.DrawOval(0, 0, 200, 15) ' try to draw outside its clip.
 ' Draw into the second area in blue
 myClip2.DrawingColor = &c0000ff
 myClip2.DrawRectangle(0, 0, myClip2.Width, myClip2.Height) ' draw the border
 myClip2.DrawOval(0, 0, 150, 15)
End Sub

PDFGraphics.ClipToPath

ClipToPath(path As GraphicsPath)

Clips the drawing to the specified GraphicsPath.

If you need to clear a Clip after it has been used, call SaveState before calling ClipToRectangle() and then call RestoreState when you no longer want the clipping in effect.

From within an MobileCanvas.Paint event handler:

' Clip to a GraphicsPath
' Path is a triangle
Var p As New GraphicsPath
p.MoveToPoint(0, 0) ' Start location
p.AddLineToPoint(20, 44)
p.AddLineToPoint(40, 0)
p.AddLineToPoint(0, 0)

g.SaveState
g.ClipToPath(p)
g.FillOval(0, 0, 50, 50)
g.RestoreState

PDFGraphics.ClipToRectangle

ClipToRectangle(x As Double, y As Double, width As Double, height As Double)

Clips the drawing to the specified rectangle.

If you need to clear a Clip after it has been used, call SaveState before calling ClipToRectangle() and then call RestoreState when you no longer want the clipping in effect.

From within an MobileCanvas.Paint event handler:

' The part of the circle drawn outside the clip area
' is not displayed.
g.SaveState
g.ClipToRectangle(0, 0, 50, 50)

g.DrawingColor = Color.Blue
g.FillOval(25, 25, 50, 50)
g.RestoreState ' removes the clipping rectangle

PDFGraphics.DrawCautionIcon

DrawCautionIcon(X As Double, Y As Double)

Draws the operating system's Caution icon at the coordinates specified.

This code draws the Caution icon at the passed coordinates. The code is in the Paint event.

g.DrawCautionIcon(170.0, 120.0)

PDFGraphics.DrawLine

DrawLine(X1 As Double, Y1 As Double, X2 As Double, Y2 As Double)

Draws a line from X1, y1 to x2, y2 in the current color. The current color is set with the DrawingColor property.

PDFGraphics.DrawNoteIcon

DrawNoteIcon(X As Double, Y As Double)

Draws the operating system's Note icon at the coordinates specified. X and Y are the coordinates of the top-left corner.

This code draws the Note icon at the passed coordinates. The code is in the Paint event.

g.DrawNoteIcon(170.0, 120.0)

PDFGraphics.DrawObject

DrawObject(Object As object2D, deltaX As Double = 0.0, deltaY As Double = 0.0)

Draws the passed Object2D object into the Graphics object. The optional parameters DeltaX and DeltaY are offsets from the top-left corner of the Graphics object to the top-left corner of the Object.

If Object is an OvalShape, then the offsets are from the top-left corner of the Graphics object to the center of the OvalShape.

The following method is in the Paint event of a DesktopWindow. It draws a simple curve. The negative value of ControlY(0) places the control point above the imaginary straight line from x,y to x2,y2.

Var c As New CurveShape
c.ControlX(0) = 120
c.ControlY(0) = -40
c.Order = 1
c.X = 10
c.Y = 100
c.X2 = 250
c.Y2 = 100

g.DrawObject(c, c.X, c.Y)

PDFGraphics.DrawOval

DrawOval(X As Double, Y As Double, Width As Double, Height As Double)

Draws the outline of an oval in the current color. The current color is set with the DrawingColor property.

X and Y are the coordinates of the top-left corner. Width and Height specify the size of the oval.

The following example sets the PenSize and draws an oval. The code is in the Paint event of a Canvas.

g.PenSize = 5
g.DrawOval(10, 10, 100, 60)

PDFGraphics.DrawPath

DrawPath(path As GraphicsPath)

Draws a bezier line along the path designated.

When autoClose is True (not available on iOS), the path will be automatically closed so that there are no gaps in it.

PDFGraphics.DrawPicture

DrawPicture(image As Picture, x As Double, y As Double, destWidth As Double = -10000.0, destHeight As Double = -10000.0, sourceX As Double = 0.0, sourceY As Double = 0.0, sourceWidth As Double = -10000.0, sourceHeight As Double = -10000.0)

Draws the picture at the specified location. The picture can be shown at full size, cropped, or scaled. All units are pixels.

X and Y are the distances from the top-left corner of the control or window from which the 0,0 point of the image will be drawn. The optional parameters are used to copy a portion of the picture (cropping) and for scaling the picture.

If you are cropping, then DestWidth and DestHeight are also required. If you are doing scaling, then all of the optional parameters are required. You scale an image by making the destination width and height different from the source width and height.

The parameters SourceX, SourceY, SourceWidth, and SourceHeight describe the portion of the image that will be scaled. DestWidth and DestHeight are used to change the scaling of the picture when SourceWidth and SourceHeight are provided. SourceX and SourceY default to 0 and are used to determine the upper-left coordinate you wish to copy from.

Note

Negative values for DestWidth, DestHeight, SourceWidth and SourceHeight are not supported so the behavior is undefined.

The following example scales an image by 50%. The image, MyImage, has been added to the project. Its size is 600 x 915. Note that the destination width and height are half the original width and height. The code is in the Paint event of a Canvas. A call to DrawRect adds a black border around the Canvas.

g.DrawingColor = &c000000
g.DrawRectangle(0, 0, Me.Width, Me.Height)
Var scale As Double = 0.50
g.DrawPicture(MyImage, 0, 0, MyImage.Width * scale, MyImage.Height * scale, 0, 0, MyImage.Width, MyImage.Height)

The following code crops the image. It copies only the top 150 pixels of the original image at full size:

g.DrawPicture(MyImage, 0, 0, 600, 150)

The following code crops and scales the image. The top half of the image is retained and the DestWidth and DestHeight parameters specify a 50% reduction.

g.DrawPicture(MyImage, 0, 0, 300, 228, 0, 0, 600, 457)

If you don't want to scale or crop the image, you can leave off the last six parameters. In this case, it will appear full-size.

g.DrawPicture(MyImage, 0, 0)

PDFGraphics.DrawRectangle

DrawRectangle(X As Double, Y As Double, Width As Double, Height As Double)

Draws the outline of a rectangle in the current color. The current color is set with the DrawingColor property.

X and Y are the coordinates of the top-left corner. Width and Height specify the size of the rectangle.

This example draws two squares with a 5-point red border.

g.DrawingColor = &cff0000
g.PenSize = 5
g.DrawRectangle(10, 10, 100, 100)
g.DrawRectangle(130, 10, 100, 100)

PDFGraphics.DrawRoundRectangle

DrawRoundRectangle(X As Double, Y As Double, Width As Double, Height As Double, ArcWidth As Double, ArcHeight As Double)

Draws the outline of a rounded rectangle in the current color. The current color is set with the DrawingColor property.

X and Y are the coordinates of the top-left corner. Width and Height specify the size of the round rectangle. ArcWidth and ArcHeight control the shape of the corners in the horizontal and vertical axes, respectively. They are the distance (in pixels) from the corner at which the arc begins. Setting them to zero results in a rectangle with sharp corners.

This example draws two squares with a 5-pixel red border. The left square sets the arcs to 10 and the right one to 25.

g.DrawingColor = &cff0000
g.PenSize = 5
g.DrawRoundRectangle(10, 10, 100, 100, 10, 10)
g.DrawRoundRectangle(130, 10, 100, 100, 25, 25)

PDFGraphics.DrawStopIcon

DrawStopIcon(X As Double, Y As Double)

Draws the operating system's Stop icon at the coordinates specified. x and y are the coordinates of the top-left corner.

This code draws the Stop icon at the passed coordinates. The code is in the Paint event.

g.DrawStopIcon(170, 120)

PDFGraphics.DrawText

DrawText(str As String, x As Double, y As Double, width As Double = 0.0, condense As Boolean = False)

Draws the str at the specified location and in the current color. The current color is set with the DrawingColor property.

The x parameter specifies the distance from the left of the Graphics object in pixels. The y parameter specifies the baseline for the text. The optional width parameter specifies the width at which str should wrap. The str will wrap if width is provided and condense is False (The default is False). If width is omitted, then str will print on one line, even if the drawing area is too narrow to contain the text. If the optional condense property is True, DrawText truncates the text to fit into the space specified by width and uses an ellipsis ("...") to indicate that there is additional text that is not shown. The default values of width and condense are zero and False, respectively. The default behavior is to print the text on one line.

This code draws text in red Helvetica 16-point:

g.DrawingColor = &cff0000
g.FontName = "Helvetica"
g.FontUnit = FontUnits.Point
g.FontSize = 16
g.DrawText("Hello world", 10, 130)

PDFGraphics.FillOval

FillOval(X As Double, Y As Double, Width As Double, Height As Double)

Draws an oval filled with the current color. The current color is set with the DrawingColor property.

x and y are the coordinates of the top-left corner. width and height specify the size of the oval.

g.DrawingColor = &cff0000
g.FillOval(10, 10, 100, 60)

PDFGraphics.FillPath

FillPath(path As GraphicsPath, autoClose As Boolean = False)

Draws a bezier line along the path designated and fills the region with the current DrawingColor value.

When autoClose is True (not available on iOS), the path will be automatically closed so that there are no gaps in it.

PDFGraphics.FillRectangle

FillRectangle(X As Double, Y As Double, Width As Double, Height As Double)

Draws a rectangle filled with the current color. The current color is set with the DrawingColor property.

X and Y are the coordinates of the top-left corner. Width and Height specify the size of the rectangle.

This example (in the DesktopCanvas.Paint control) draws a rectangle with a red interior.

g.DrawingColor = &cff0000 ' Red
g.FillRectangle(10, 10, 100, 60)

PDFGraphics.FillRoundRectangle

FillRoundRectangle(X As Double, Y As Double, Width As Double, Height As Double, ArcWidth As Double, ArcHeight As Double)

Draws a rounded rectangle filled with the current color. The current color is set with the DrawingColor property.

x and y are the coordinates of the top-left corner. width and height specify the size of the round rectangle. arcWidth and arcHeight control the shape of the corners in the horizontal and vertical axes, respectively. They are the distance (in points) from the corner at which the arc begins. Setting them to zero results in a rectangle with sharp corners.

This example (in the DesktopCanvas.Paint control) draws a rounded rectangle with a red fill and 30 pixel rounded corners.

g.DrawingColor = &cff0000
g.FillRoundRectangle(10, 10, 100, 60, 30, 30)

PDFGraphics.LineDash

LineDash(Assigns values() As Double)

Specifies the on/off dash pattern.

Passing an array with the values 1.0, 2.0 means a dash of 1 unit with a spacing of 2 units per dash.

Setting LineDash to Nil restores drawing to solid lines.

LineDash affects DrawLine, DrawOval, DrawPath, DrawPath, DrawRectangle, DrawRoundRectangle and DrawText (if Outline = True).

LineCap and LineJoin will affect how the dashes are drawn.

Draw a diagonal line with 2 unit dashes and 3 unit gaps

g.PenSize = 5
g.LineDash = Array(2.0, 3.0)
g.DrawLine(0, 0, g.Width, g.Height)

PDFGraphics.NextPage

NextPage

Adds to the PDFDocument a page whose size is defined by the width and height passed.

PDFGraphics.NextPage

NextPage(width As Double, height As Double)

Adds to the PDFDocument a page whose size is defined by the width and height passed.

PDFGraphics.ResetState

ResetState

Resets the FontName, FontSize, Bold, Italic and DrawingColor properties to their default states.

PDFGraphics.RestoreState

RestoreState

Restores the FontName, FontSize, Bold, Italic and DrawingColor properties to the values they had when SaveState was last called for this object.

PDFGraphics.Rotate

Rotate(angle As Double)

Rotates the drawing context at the x and y coordinates by the specified angle (in radians). This only affects subsequent drawing. Any drawing done before the Rotate method called is not rotated.

Use Translate to move the origin.

Support for Rotate in Desktop and Console applications was added in 2021r1.

When used in combination with Scale and/or Translate to draw into a PDFDocument, Rotate may behave differently than it does when drawing to normal Graphics object because the rotation is being handled by the PDF engine itself.

From within an MobileCanvas.Paint event handler:

' Rotate square in center of graphics area
Const Pi = 3.14159
g.Translate(g.Width / 2, g.Height / 2)
g.Rotate(Pi / 4) ' 45 degrees or 1/8 of a circle
g.DrawingColor = Color.Blue
g.FillRectangle(10, 10, 50, 50)

' Rotate the entire drawing area around its center
' and draw a rectangle
Const Pi = 3.14159
g.Rotate(Pi / 4, g.Width / 2, g.Height / 2) ' 45 degrees or 1/8 of a circle
g.DrawingColor = Color.Blue
g.FillRectangle(g.Width / 2 - 20, g.Height / 2 - 20, 20, 20)

PDFGraphics.SaveState

SaveState

Saves the FontName, FontSize, Bold, Italic and DrawingColor property values so they can later be restored via RestoreState.

PDFGraphics.Scale

Scale(x As Double, y As Double)

Sets the scale for the graphics context as specified scaleX and scaleY. This only affects subsequent drawing. Any drawing done before the Scale method is called is not scaled.

When used in combination with Rotate and/or Translate to draw into a PDFDocument, Scale may behave differently than it does when drawing to normal Graphics object because the scaling is being handled by the PDF engine itself.

From within the MobileCanvas.Paint event handler:

g.Scale(2.0, 4.0)
g.DrawingColor = Color.Blue
g.FillRectangle(10, 10, 10, 10) ' The squares scales to a rectangle

PDFGraphics.TextDirection

TextDirection(Text As String) As Graphics.TextDirections

Returns an Enumeration that indicates the direction in which the text is written.

This is useful for non-Roman systems, especially Middle-Eastern languages. If you pass an empty string, it returns the system default string direction. If this function is not supported on the user's system, the Graphics.TextDirections value will be Unknown.

This example gets the string direction.

If g.TextDirection("Hello world") = Graphics.TextDirections.RightToLeft then
 MessageBox("We are on a right to left system.")
End If

PDFGraphics.TextHeight

TextHeight As Double

Gets the height of a line of text drawn with the current font.

TextHeight(Text As String, WrapWidth As Double) As Double

Used to calculate the height of a line of text passed (given the wrap width passed) drawn with the current font.

TextHeight is calculated as the maximum height for the font itself and not the actual height of the text. For example, with "a" vs. "A", both return the same TextHeight even though "A" has a greater height than "a".

g.FontName = "Helvetica"
g.FontUnit = FontUnits.Points
g.FontSize = 32

Var height As Double
height = g.TextHeight("Hello world", 150)

This example reports the TextHeight of the current text.

g.DrawingColor = &cff0000
g.Italic = True
g.DrawText("Hello world", 10, 10)
MessageBox(g.TextHeight.ToString)

PDFGraphics.TextWidth

TextWidth(Text As String) As Double

Returns as a Double the width of Text in points, based on the current text properties of the Graphics object.

To be precise, Graphics.TextWidth returns the width of the string's baseline, which is to say that it returns the position that the next character would be drawn at, if the string were to be extended. For example, if Graphics.Bold is True, then each character would have a larger width when drawn, so Graphics.TextWidth will return a larger value than otherwise. On the other hand, if Graphics.Italic is True, then the last character of the text would lean to the right when drawn, increasing the visual width of the text slightly. However, the baseline of the rendered string would not have changed, so Graphics.TextWidth will generally not return a different value in this case.

Graphics.TextWidth does not handle multiple lines in the way that one might expect. Essentially, the multi-line nature of the text is ignored, and newline sequences are treated as if they were space characters. For example, it returns the same value for the text "A B" as for the text "A"+EndOfLine+"B". To take multiple lines into account, you'll need to String.Split the text into multiple lines yourself, and calculate the width of each line separately, handling leading or trailing whitespace in whatever way makes sense for your situation.

This example creates a Picture and uses its Graphics object to calculate the TextWidth and display it in a TextField on a window:

Var d As Double
Var p As New Picture(100, 100, 32)
d = p.Graphics.TextWidth("Hello World!")
TextField1.Text = d.ToString

PDFGraphics.Translate

Translate(x As Double, y As Double)

Translates the origin point by the specified x and y values. Useful with Rotate.

Support for Translate in Desktop and Console applications was added in 2021r1.

When used in combination with Rotate and/or Scale to draw into a PDFDocument, Translate may behave differently than it does when drawing to normal Graphics object because the translation is being handled by the PDF engine itself.

From within an MobileCanvas.Paint event handler:

' Rotate square in center of graphics area
Const Pi = 3.14159
g.Translate(g.Width / 2, g.Height / 2)
g.Rotate(Pi / 4) ' 45 degrees or 1/8 of a circle
g.DrawingColor = Color.Blue
g.FillRectangle(10, 10, 50, 50)

Notes

PDFGraphics is a subset of the methods and properties available in the Graphics class. Because PDFGraphics is a subclass of Graphics, you can pass a PDFGraphics object to methods that expect a Graphics object.

This class does not support Introspection.

Compatibility

Desktop, console, web and iOS project types on all supported operating systems.

See also

Graphics parent class; Graphics and PDFDocument classes

 Previous
 Next

 © Copyright 2024, Xojo, Inc.

 Built with Sphinx using a
 theme
 provided by Read the Docs.
 Have a suggestion about the docs? Let us know.
Docs for the Xojo programming language and IDE

Top

